


Abstract,

The higher modal dynamic plastic response of impulsively
loaded, fully clamped beams is examined herein, using various

rigid perfectly plastic theoretical procedures and a numerical

elastic-plastic computer code.
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Notation

P pressure

t time

t* defined by equation (47c).

u axial displacement

w lateral or transverse displacement defined
in Figure 1.

X,2 axial and transverse coordinates defined in
Figures 1 and 3, respectively

B,H beam breadth and beam thickness

Er energy ratio

2L beam length

M,N bending moment per unit length and axial force
per unit length defined in Figure 3.

M, o,nzld

o o.n

Q transverse shear force per unit length defined
in Figure 1.

Q, o.n/JS‘

Yo peak value of initial impulsive velocity

w transverse displacement at an interior hinge

We final or permanent transverse displacement

W, W/H

Vag W/H

A defined by equation (21b)
mass per unit length

[

density of material




g, 0.1% uniaxial static proof stress
(") 2 ()/ a2t
(f 3 () ax
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when using W = 0 and W = V5, at t = 0 to evaluate the
constants of integration. The beam reaches a permanently

deformed precfile at t = T when W = 0. Thus,
T = uyn, */ (6Mg) (19)

and the associated maximum permanent displacement at all
plastic hinges 1, 2, . . . , n, is

Wee = An, /12 (20)

£

where W,. = wf/n, X = uvosz/(MoH), and n,* n /L (21a-c)
with nxgiven by equation (16) for the 2n-1 mode. It is evident

from equation (1) that the final profile of the beam is
w =
£ oW, (22)

Equations (2) and (9) indicate that M" has the same
sign as ¢. Thus, M" > 0 in all regions below the x axis in
Figure 2(a) since ¢ > 0, while M" = 0 on the x axis. However,
the boundary conditions M = M, and M' = Q = 0 were used in
the foregoing theoretical analysis for all plastic hinges

(L, 3, . « . , n-1) which lie below the x axis, while M = M,




was used for the support hinge at x = 0.t It is evident,
therefore, that the bending moment distribution has minima
at the plastic hinges located at x = n; | MRS e e e e

n - 1) and M > =M, for all other parts of a beam with ¢ > 0.

~

Moreover, it is now clear that -My < M < M, within region 1

for which 0 R S

Similarly, M" < 0 for all regions which lie above
the x axis in Figure 2(a), while M = M, and M' = 0 = 0 at all
the associated plastic hinges (2, 4, . . . , n). Thus, the
bending moment field has maxima at the plastic hinges
located at x = ny (i=2,4, . .. ,n) and M < M, for all

other parts of a beam with ¢ < 0.

It is now apparent that the bending moment distribution
associated with the foregoing theoretical solution has
-M, < M < My and is therefore statically admissible since it
satisfies the required conditions at all the plastic hinges
and nowhere violates the yield criterion in those parts of a
beam lying between the plastic hinges. Furthermore, the
solution is also kinematically admissible, so that it is
exact according to the methods of plasticity developed for
structures which undergo infinitesimal deflections.

Equations (19) and (20) with n = 1 and n = 2 agree with the

+In fact, the theoretical analysis also caters for the
possibility that plastic hinges (2, 4, 6, . . . , n) lie
below the x axis, in which case M = - M, at the support.

v
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first and third mode solutions presented in Reference [1].

It is convenient at this juncture to list, for future

reference, the total angular rotation rates (6) across the

individual plastic hinges in a beam which responds in a

symmetric deformation mode. It is evident from Figure 2(a)

and

equations (10) and (12) that

l6g] = W/n, (23a)

corresponds to the support hinge, while

and

for

and

for

3.2

8,1 = (n + n)wW/{n (n, = n)} (23b)
'éil - 2‘"14,1 = ﬂi_l);'/( (ni+l i ni) ("Ii o ni_l)} (23c)

hinge number 1 and a typical interior hinge i, respectively,
fenl = le41/2 (234)

the central hinge.

Antisymmetrical Modal Reéponse (Infinitesimal Displacements)

Three types of shape functions ¢(x) = -¢ (2L - x) are

required to characterise any antisymmetrical modal response

of a beam such as that indicated in Figure 2(b). Two of these

are given by equations (6) and (7), while the third is




¢ =+-(—-_)—, n iXiL (24)

for the region immediately adjacent to the mid-span, where
2n is the mode number. The negative sign in equation (24)
is associated with with region (n + 1) illustrated in
Figure 2(b), while the positive sign corresponds to the case

when the plastic hinge n lies below the x axis.

Now, substituting equation (24) into equation (2)
then integrating twice with respect to x and satisfying the
boundary conditions M' = Q =0, M = + M, at x = nn‘r and

equation (5b) at x = L gives

By =& =0 V2 (25)

when using equations (9) and (10) for the plastic hinge n.

Equation (12) remains valid so that

Wy ®ona 4 /7n‘. (26)

which when combined with equation (25) gives

n L =l 1/2)/7h1. (27)

n-1

1"l‘he + sign is associated with a plastic hinge n as

illustrated in Figure 2(b), while the - sign corresponds
to the case when hinge n lies below the x axis.
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It is evident from equations (12), (26) and (27) that

O Rt 1/2)/2n , or
n; = L~-(n-1i+ 1/2)-/'5'11l (28)
whenn - j = i. Thus, equation (14) and equation (28)
with i = 2 predicts
n =L+ n- 1/2)/2} (29)
which when combined with equation (28) gives
e
where i =1, 2, 3, . . . , n.

The response is now sought for a fully clamped beam
subjected to an impulsive velocity field which has a shape
of the same form as Figure 2(b) with equal peak initial
velocities |V,| at every hinge 1, 2, 3, . . . , n. 1In fact,
equations (6) to (11) remain valid for antisymmetric mode
deformations, except Uy is now given by equation (28). Thus,
equations (18) to (22) remain unchangQQ and the maximum
transverse deflection and response duration are again given
by equations (20) and (19), respectively, but with n defined

by equation (29).

The foregoing theoretical solution is exict in
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regions 1 to n as discussed earlier for the symmetric case.
It is evident for equations (2), (9) and (24) that M" has
the same sign as ¢ in the region n,<x<L immediately
adjacent to the mid-span. Thus, the bending moment
distribution is statically admissible in this region because
M' =0 and M = + My at x = " and M = 0 at x = L. Therefore,
the theoretical solution for an antisymmetric modal response
is both kinematically and statically admissible so that it
is exact according to the methods of plasticity developed
for structures which undergo infinitesimal deflections.
Equations (19) and (20) with n = 1 and n, defined by equation
(29) agree with the second mode solution presented in

Reference [1].

Equations (23a) to (23c) with n; defined by equation
(30) again give the total angular rotation rates across the
plastic hinges located at x = 0, x = nl and x = ny (i =2, 3,
4, . . . , n=-1), respectively. It can be shown when

substituting equation (30) into equation (23c) that
16,1 = 2/2W(1 + (n - 1/2)/3}/L. (31)

Moreover, it is evident from equations (1), (24)-(26) and

(29) , that the total anguiar rotation rate across the plastic
hinge located at x = N, in'Figure 2(b) is also given by equation
(31) which is therefore valid for i = 2, 3, 4, . . . , n.
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4. Influence of Finite-Displacements.

4.1 Basic Equations.

It was shown in Reference [ 3] that

r .
(p ~ uw)wda = J (Nw - M)6.4cC (32)
: Aot o
A i=1l ‘c,
i
for an initially flat rigid perfectly plastic plate of area
A which deforms into a number of rigid regions separated by
r straight line plastic hinges each of length Ci. 0i is the
relative angular rotation rate across a straight line hinge,
w is the transverse displacement along a line hinge, and N
and M are the membrane force and bending moment which act on

a plane which is transverse to the mid-plane of a plate and passes

through a line hinge.

Now, it is straightforward to show that eguation (32)

is simply an energy conservation statement, and, in fact, it has

A <R AL A s 7

been recently rederived by Taya and Mura [ 6] using a
variational method. The left hand side of equation (32) is !
the external work rate, while the term '"61 on the right
hand side is related to the internal energy dissipation due
to bending at the plastic hinge lines. If w is measured
vertically downwards from ghe mid-plane of a plate, then
the bending moment (M) is ppsitiv. at a hinge when the ]
material on the upper surface of a plate is stretched and |

the associated value of 61 is negative. The term lvéi on
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the right hand side of equation (32) is related to the

internal energy dissipation of a plate arising from the

membrane (in-plane) forces at the plastic hinge lines.

This can be demonstrated when using simple geometrical

arguments for moderate transverse deflections for which the
in-plane displacements are assumed to be zero. 1In the particular
case of a rigid region rotating with an aagular rotation rate

é about a simple support having w = 0, for example, it

is evident that wé is the axial extension rate of a hinge

at the other end.

Thus, the integrand on the right hand side of

equation (32)
Di = (Nw - M)Bi (33)

can be interpreted as the internal energy dissipation
rate per unit length of a straight line hinge. The
explicit form of the dissipation function (Di) depends
on the type of supports around the boundary of a plate
and on the yield condition for the material.

If the maximum normal stress yield criterion

is selected (see Figure 5 of Reference [ 3]) then it is

evident from Figure 3 that a membrane force

.2 ‘ (34)

LN S S b LA T
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is accompanied by a bending moment

- gt 4z
ﬁ; 1+ 47 (35)

provided 0 < z < H/2. Equations (34) and (35) can be

combined to give the well known yield condition

2
- (g;] (36)

°=|2!

Now, consider a fully clamped span of length 2L
which remains entirely rigid except at a central plastic
hinge of length 2c and at plastic hinges located at the
supports, each of length c. The axial extension of the
mid-surface of the span is w2/L, or w?/2L for each half span,
where w is the transverse deflection at the central hinge. If the
axial extension of each half of the span is divided equally
betweean the associated support and central hinges, then the
axial strain rate is ; = w;/ZLc. Similarly, the curvature
change at the hinges are w/cL which gives a curvature rate

¢ = w/cL. Thus,
e/v's wid, (37)

However, if plane cross-s--.ions remain plane during

deformation, then ; s ni;f which when combined with equations

-~
L is the location of the neutral axis in Figure 3.
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(34) and (37) gives

N/No = w/H (38)

which requires w/H < 1 in order to maintain N/No < 1.

Consequently, equation (36) is valid if 0 < w/H <1, while
N = No and M = 0 when w/H > 1. Finally, if equations (36)
and (38) are substituted into the dissipation function (33)

for a beam or plate with a solid cross-section (NO = AMb/H),
then

= 2 /a2y a
Di Mo(l + 3w®/H )Gi (39)*

provided w/H < 1, and

Di = 4u°wei/n (40)

when w/H > 1.

If a beam of length 2L is subjected to a symmetric
or antisymmetric impulsive velocity distribution, then p = 0,
and it can be shown for one half span of the beam with unit
width that the left hand side of equation (32)

L e
- ! uwwdA = = uLWW/3 (41)
o

when ; is defined by equation (1) and ¢ is given in Figures

*Bquation {39) was derived for M < 0 and ré.%: 0. However,

equation (39) ig also obtained for the ot possible case
when M > 0 and i g
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2(a) and 2(b).

4.2 Symmetric Response (Maximum Normal Stress Yield Criterion).

The total energy dissipation in one half of a beam

undergoing a symmetric modal response is
DT = D° + D, + (n - 2)Di + Dn » N> 2 (42)

where the subscripts refer to the plastic hinges shown in
Figure 2(a) and Dy is defined by equation (33). Thus, substituting

equations (17), (23a-d), (33), (36) and (38) into equation (42)

gives
Dp = 24 W{1 + /Z(n - DI[1 + VZ(n - 1) + {1 + 3/T(n - 1) Iw/u?]/L,

n > 2. (43)

Equation (32) can now be written with the aid of equations

(41) and (43) in the non-dimensional form

W, + BW =8, , W, <1 (44)
where
B, = 6{1 + 3/Z(n - HH1 + /2Z(n - 1)} (45)
B, = - 6{1+ /2(n = 1)}2/) (46)
We=WH, W,=WH/V?, t, = tV,/H (47a-c)

and ) is defined by equation (21b).
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A theoretical solution of equation (44) may be
obtained using the method of successive approximations.
Thus, a second approximation which satisfies the initial

conditions W, = 0 and W, = 1 at t, = 0 can be written
W, = t, + Byt ?/2 ~ 8,¢t,"(1 + 38,¢,/5 + B,2t,%2/10)/12  (48)

provided W, < 1. The duration of motion T, is associated

with the instant when W, = 0, or
1+p,7 -8,7°( +38,7,/4 +38,°7,%/20)/3 = 0 (49)

and the corresponding maximum permanent transverse displacement
W*f is given by equation (48) with t, = T,. It can be shown
when B, = 0 that the theoretical predictions of equations (48)
and (49) reduce to equations (20) and (19), respectively,

for infinitesimal displacements.

Now, as remarked previously, the foregoing theoretical
solution is valid provided W, < 1 in order to ensure N < N_

according to equation (38). The case W, > 1 is now examined

for which N = NO and M = 0.

If equations (40) and (41) are substituted into
equation (32), then

.,
- ULWW/3 = “0"1.{.1“1/" (50)
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when using equation (l1). It turns out that 6; > 0 when ¢ = 1,
and 8; < 0 when ¢ = -1 (see Figure 2(a)),so that equation (50)

becomes

- uLWW/3 = 4MOW6T/H (51)
where

8o * [0,] * In >~ 2"91' + e |- (52)

Thus, substituting equations (17) and (23b-d) into equation
(51) gives
W, + a?W, = 0 (53)

where

a? = 12{1 + V/2(n - 1)1 + 2/2(n - 1)}/A. (54)

The initial conditions at t, = tey associated with equation
(53) are W, = 1 and ﬁ, = é*i' where t,. is given by equation
(48) with W, = 1 and &*i is given by the time derivative of
equation (48) evaluated at t = tej- Therefore, the solution

of equation (54) is
W, = (W, /o) sinfal(t, = t,.)} + cosfa(t, - tay)} (55)
which predicts a response duration

Ty = Byy + 0™ tan"(é.ila) (56)

and a maximum permanent transverse displacement
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* 1
Wep = (1 + W2, /a%) %2 (57)

4.3 Antisymmetric Response (Maximum Normal Stress Yield Criterion).

The total energy dissipation in one half of a beam

undergoing an antisymmetric modal response is

DT il i M (n - l)Di ' (58)
where the subscripts refer to the plastic hinges shown in
Figure 2(b). Substituting eqguations {23a), (23b), (30), (31),

(33), (36) and (38) into equation (58) gives

Dy * noﬁ{l + /2(n - 1/2)}[2 + /2(2n - 1) + {2 + 3/2(2n - 1>}w2/3{]/L.
(59)

If equations (41) and (59) are substituted into equation (32)

then equation (44) is again obtained, except now

B, = 6{1 + 3/2(n - 1/2) {1 + V/Z(n - 1/2)}/A (60)
and B, = = 6{1 + /Z(n - 1/2)}%/x. (61)

Equation (29) can be used to rewrite equations (60) and (61)
in the form

B, = 6(3 = 2n)/(xn}) (62)
and B, = =~ 6/(dn 7). (63)

It turns out that oQuAtIOnl (45) and (46) for the

symmetric case can be recast into the same form as equations
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(62) and (63) provided n, is defined accorlding to equation (16).
Thus, equations (44) and (47)~(49) are valid for all symmetric
and antisymmetric modal responses with B8, and B, defined by
equations (62) and (63) and n, defined by equations (16) and

(29) for the symmetric and antisymmetric cases, respectively.

It can be shown that equation (53) is also obtained

for antisymmetric modal responses with w* > 1, except now
a? = 12{1 + /2(n - 1/2)}{1 + /2(2n - 1)}/ (64)
which can be rewritten
a? = 12(2 - n )/(xn ?) (65)
Hel wl

when using equation (29). However, equation (54) also takes on
the form of equation (65) when n, is given by equation (16)

for symmetric modes. Thus, equations (56) and (57) are valid
for all symmetric and antisymmetric modal responses when o

is defined by equation (65) and n, is given by equations (16)

and (29) for symmetric and antisymmetric responses, respectively.

4.4 Symmetric Response (Square Yield Criterion).

It has been shown in References [ 2] and [ 3] that
the theoretical predictions of equation (32) with a square
yield curve relating N and M (i.e., N = N,» M= Mo) providé
a lower bound to the experimental and "exact" theoretical
maximum permanent transverse displacements of uniformly loaded

fully clamped beams, while the theoretical predictions
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corresponding to an inscribing square yield surface (i.e.,

N 0.618 Ny, M = 0.618 Mj) give an upper bound.

Now, substituting equations (17), (23a-d), (41) and

N = Ny and M = + My into equation (32) gives

W, + a®W, = - a2{1 + /Z(n - 1)}/{2 + 4/Z(n - 1)} , (66)
where a? is defined by equation (54). The initial conditions
of equation (66) are W, = 0 and W, = 1 at t, = 0. Thus, the
duration of response is

o, =g tan”l[a"{z + 4/2(n - 1)}/{1 + /2(n - l)}], (67)

and the associated maximum permanent transverse displacement is

1
Akt efn = 1) ML+ 2/Z(m - 7%
Weg 2{1 + 2/2(n - 1)} [31 31 ¥ Bm-=-107 1]. (68)

Fquations (67) and (68) with n = 1 for the first mode respectively
agree with equations (35) and (34) in Reference [ 1]. It is
straightforward to show when tan aT, = aT, and

AM1 + 2/2(n - 1)1 + /2(n - 1)}7%/3 << 1 that equations (67)

and (68) respectively reduce to equations (19) and (20) for

infinitesimal displacements.

4.5 Antisymmetric Response (Square Yield Criterion).

It can be shown when substituting equations (23a), (23b),

T .
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(30), (31), (41) and N = No' Mot M into equation (32)

that
-~ 2 - - 02{1 + V2(n - 1/2)}
e Tt g 2{1 + 2/3(n - 1/2)} (69)
where
a? = 12{1 + ¥2(n - 1/2)}{1 + 2/2(n - 1/2)}/) (70)

and W, = 0 and W, = 1 when t, = 0. The duration of response
is
T, = 1/a tan~'{2(2 - nﬂ)/a} (71)

*

and the maximum permanent transverse displacement is

-1

1
W, = (2 -1n) [{1 #An 2(2 -n)/317%2 - 1]/2 (72)
*1 *1 *1

f

where equation (70) can be rewritten

a? = 12(2 - n‘)/(knj) (73)

when using equation (29). It turns out that equations

(67), (68) and (54) for the symmetric case can also be recast
into the same form as equations (71) to (73), respectively,
provided n, is now defined by equation (16). Thus, equations
(71) and (72) can be used for any symmetric or antisymmetric
response mode provided n, is defined by equation (16) for

symmetric modes (Figure 2(a)) and by equation (29) for

antisymmetric modes (Figure 2(b)).
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5. Discussion.

The influence of material elasticity was disregarded in
the theoretical solutions in sections 3 and 4. This is a reason-
able simplification for impulsive loadings when the energy ratio
defined by equation (44) in Reference [1] is not too small [see 7,8].
Recently, Wu and Witmer [4,5] developed a spatial finite-element
and temporal central-difference computer code JET 3C which can be
used to study the dynamic elastic-plastic response of beams. Some
numerical results for the first, second and third mode cases are
compared in Figures 4 to 9 with the rigid-plastic theoretical
predictions presented herein and the corresponding strain-rate
insensitive experimental tests reported in Reference [1].

It is evident from Figures 4 to 6 that the simplest theoretical
solution which retains the influence of finite-deflections (equation
(72)) gives reasonable agreement with the numerical elastic-plastic
results and with the corresponding experimental values except in the
third mode case. It was observed in References [2] and [3] that
the same theoretical method which retained the influence of geometry
changes gave good agreement with experimental results recorded on
uniformly loaded beams and rectangular plates made from strain-rate
insensitive materials. The numerical values for the elastic-plastic
cases in Figures 4 to 6 were estimated from the deflection-time
histories as indicated in Figures 7 and 8. The experimental results
for the third mode case in Figure 6 lie below all the numerical
and theoretical predictions and is conceivably.due to the neglect

of rotary inertia, transverse shear effects and material strain
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hardening which are likely to become more important for the higher
modal responses. These effects weras neglected in all the theoretical
sclutions and transverse shear effects and material strain hard-
ening+ were not retained in the JET 3C calculations. It should be
noted that Symonds (9] incorporated the influence of transverse

shear forces in a yield criterion and observed that they were re-
sponsible for a decrease in the slope at the mid-span of a beam loaded
dynamically. However, when these results were reconsidered in
Reference [ L0] , it turned out that transverse shear effects caused
the maximum permanent transverse deflections to increase as can be
interpreted from the results presented in Figure 4 of Reference [10] .
Nevertheless, it is not known whether the incorporation of transverse
shear effects in the yield criterion would decrease or increase the
maximum permanent transverse displacements of the fully clamped beams

examined in this article.

The magnitudes of the non-dimensional transverse shear forces
(Q/Qo) listed in Table 1 were estimated from the bending moments
in the computer output of the JET 3C numerical elastic-plastic
program. If rotary inertia is neglected, then Q = - dM/dx = -

M; -~ M, 1)/ (%, - x;_,), where (x; = x;_;) is 0.25 in. for the

i i
first and second mode cases and 0.1 in. for the third mode case.

program does have the capability to examine

omputer
The Ja% ¢ oatw However, the ultimate stress for the

strain hardening effects.

luminum 6061T6511 test specimens is approximately only .1.4 percent
;arger than the 0.1 percent offset yield stress oo) Fi].




Y

e

25

The fully plastic transverse shear force is Qo = ooH//3. It is
evident from Table 1 that the ratio Q/Qo increases, with increase
in mode number despite the fact the Wf/ﬂ is smaller for the higher
modes. However, in order to reduce the amount of output data and
lower the printing costs, the bending moment distribution across a
beam was printed at approximately 20 usec intervals. Thus, larger

T Furthermore

values of Q/Qo could have occurred at intermediate times
if the largest value of the transverse shear force (Q/Qo) for the

third mode case in Table 1 is alternatively estimated at x = 0.25 in.

"

using the values of the bending moments at x 0.125 in. and

x = 0.375 in., then it turns out that Q/Qoz 0.28 at t = 20.3 usec

which is still larger than Q/Qo in the first and second mode cases
which were calculated for a 0.25 in. separation of the modes. These
observations would appear to justify further investigations in order
to determine the importance of transverse shear forces on plastic
yielding and to seek the influence of shear deformations on the
higher modal response of beams.

The axial strains according to the JET 3C numerical method are
listed in Table 2 for a few locations, on the upper and lower

surfaces of the beams examined in Figures 7 and 8.

+The JET 3C computer program was used to repeat the third mode

case in Table 1 with output printed at approximately 1 usec intervals
for the first 150 psec of the response. It transpired that at

x =0.1 in., Q/Q° equalled 0.41, 0.41 and 0.40 when t equalled 1.02
usec, 16.25 usec and 26.4 usec, respectively.
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The first and third mode classical vibration periods for a
fully clamped beam with the same parameters as the one considered in
Figure 8 are 596 usec and 110 usec, respectively. These values are
predicated on the assumptions that the response is entirely elastic
and the displacements remain infinitesimal. It is evident from
Figure 8 that the period of the high frequency vibration of the
deformed beam is approximately 85 usec and is associated with a
third mode vibration. The low frequency vibration has a period of
approxiamtely 595 usec and is related to vibrations in the first
mode. It is important to emphasize that the classical values were
developed for an initially straight beam whereas the numerical
results in Fiqgure 8 are associated with the vibrations of a per-
manently deformed beam.

The amplitude of the first modal vibration for the beam
examined in Figure 8 is sensitive to the relative magnitude of the
initial velocities at the center and outer hinges (See Figure 2(c)
of Reference [1] ). This velocity ratio (Vo at center/vo at outer
peak) is 1.022 for the beam which is examined in Figure 8. The
amplitude of the first modal vibration is somewhat larger
(w/H=0.07 at the beam centre) when the velocity ratio is unity
which is the initial velocity distribution required for a pure
third modal response according to a rigid-plastic theory based
on infinitesimal displacements (Figure 2(c) of [1] ). The JET
3C computer program was also used to obtain the response of the same
beam with an initial velocity amplitude ratio of 0.978 which gave
rise to the first modal vibrations with an amplitude of w/H~0.10

at the beam center.
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| The theoretical methods developed in Reference (1] and herein
l* disregard any in-plane or axial displacements as is customary for
this type of problem. However, it turns out that the in-plane
displacements (u) predicted by the numerical elastic-plastic method
are generally one order of magnitude smaller than the associated
lateral or transverse displacements (w) as shown in Table 3.
The energy ratio (Er) for a beam is defined in Reference [1l] as
the ratio between the initial kinetic energy (K.E.) and the
maximum possible amount of strain energy (S.E.) which can be absorbed
by a beam in a wholly elastic manner. The maximum elastic strain
energy is estimated for the present problem by simply multiplying
< the volume of material by oojb/z where ey oo/E. The temporal
variations of the total plastic work, total elastic strain energy
} (S.E.) and total kinetic energy (K.E.) in a beam according to the
JET 3C numerical procedure are shown in Figure 10 for three
different cases. One suitable energy ratio for the numerical
results is given by the ratio of the initial kinetic energy to
the maximum residual elastic strain energy when plastic flow ceases.
In this circumstance, the energy ratios turn out to be 13.3, 24.5

and 46.6 for the beams examined in Figures 10(a) to 10(c), whereas

the corresponding values of Er given by equation (44) in Reference
[1] are 2.01, 5.24 and 5.56, respectively. This confirms, at
least for these particular cases, that the general procedure for
calculating energy ratios developed in the Appendix of Reference

(11 and specialized to the present problem in Reference [l] is

conservative.
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6. Conclusions.

The higher modal dynamic plastic response of fully clamped
beams has been examined using various rigid perfectly plastic
theoretical procedures and a numerical elastic-plastic computer
code. The theoretical predictions of equation (72), which retains
the influence of geometry changes, and the numerical results agree
reasonably well with the corresponding experimental values on strain
rate insensitive beams which were subjected to first and second
modal initial velocity distributions. However, all the experimental
results for the third mode case lie below the various theoretical
methods and numerical results, the reason for which is possibly

due to the neglect of transverse shear effects.
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Table 1. Transverse shear force ratios (Q/Qo) according to
JET3C computer program for the beams described in the
titles of Figures 7 and 8.

Table 2. Axial strains on the upper and lower surfaces of the
beams described in the titles of Figures 7 and 8 according
to the JET3C computer program. * denotes maximum strain in
computer output.

Table 3. Ratios of axial displacements (u) to transverse dis-
placements (w) according to JET3C computer program fcr the

beams described in the titles of Figures 7 and 8.

WIS CN e <o O i




L -

32

SPECIMEN x t Q

MODE NUMBER [1] (in) (usec) Qo
1.00 40.4 0.13
1 6 0.25 121.3 0.16
0.25 141.5 0.17
0.25 20.2 0.21
2 11 0.25 40.5 0.24
0.50 40.5 0.17
0.10 20.3 0.35
3 23 0.10 60.9 0.2%
0.30 60.9 0.25

TABLE 1
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TOTAL
SPECIMEN
MODE NUMBER X t AXIAL STRAIN
(1] (in) (psec) LOWER UPPER
SURFACE SURFACE
0.125 101 -0.021 0.043
0.125 182 ~0.030 0.065%
1 6 0.125 647 -0.026 0.053
0.375 647 -0.0008 0.003
1.375 61 0.066 -0.026
0.125 101 -0.039 0.095%
2 11 0.125 465 -0.033 0.074
1.375 465 0.055 -0.022
0.050 61 -0.084 0.167*
1.050 61 0.121 -0.056
3 23 2.450 61 -0.057 0.122
0.050 | 996 -0.078 0.146
TABLE 2
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SPECIMEN

MODE NUMBER X t u

[1] (in) (usec) w
1.75 20.2 -0.0021
1 6 2.00 80.8 -0.0078
B ooy 181.9 -0.0150
0.25 60.7 0.1992
2 11 1.75 60.7 0.0653
1.75 80.9 0.0691
0.20 81.3 0.1462
3 23 1.20 81.3 0.0770
2.20 81.3 0.0555

TABLE 3.
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Figure 4. Maximum permanent transverse deflections of fully

clamped beams subjected to initial velocity fields with a first
modal shape.

_ equation (20).

equations (48), (49) and (57).

—————————————— equation (72). Upper curve corresponds to
equation (72) with 9% replaced by 0.61800.
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Figure 6. Maximum permanent transverse deflections of fully

clamped beams subjected to initial velocity fields with a
third modal shape.

The various curves are defined in the title of
Figure 4.
0,0 experimental test results recorded at center and
outer zones, respectively, and given in Table 3 of Reference [1]
+L, P numerical elastic-plastic predictions of JET3C for
specimen number 22 in Table 3 of Reference [1 ]} with A = 31.5
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o, o numerical elastic-plastic prediction of JET3C for

the beam described in the title of Figure 8.

Figure 7. Transverse displacement-time histories according to

JET3C computer program with a central-difference temporal operator
and 10 finite-elements/half span.

(a) First mode. Parameters for specimen number 6 in Table 1 of
Reference [l1] with X = 17.82

(time step = 0.2526 psec).

— — —.. estimated permanent transverse displacement at beam cent:

- o« experimental value of maximum permanent transverse

deflection of specimen number 6 in Table 1 of Reference (1] .
(b) Second mode. Parameters for specimen number 11 in Table 2
of Reference [1] with A = 46.6 (time step = 0.2529 psec).
ST e estimated permanent transverse displacement at

x = 1.50 in. from support. The node at x = 1.50 in. is the one

nearest to n‘ = 1,47 in.
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g experimental values for maximum permanent

transverse deflections of specimen number 11 in Table 2 of

Reference [1]

Figure 8. Transverse displacement-time history for the third
mode test specimen number 23 in Table 3 of Reference [l1] according
to JET3C computer program with A = 48.13 (Central-difference
temporal operator, time step = 0.1016 usec, 25 finite-elements/
half span).

transverse displacement at center.

&l OF - eeseenean transverse displacement at x = 1.00 in from

support. This displacement is actually negative, but is plotted

positive for convenience. The mode at x = 1.0 in is the one

nearest to nl = 1.039 in.

------- 1 estimated permanent transverse displacement at

2 estimated permanent transverse displacement
at beam center.

Figure 9. Comparison of experimental permanently deformed profiles
and transverse deflections predicted by various theoretical
methods.

(a) First mode. Specimen number 6 in Table 1 of Reference [1l] .
experimental results

equation (72) with A= 17.7.

A= 17.7.

equation (72) with o, replaced by 0.61800 and

+,0 numerical elastic-plastic predictions of JET3C
computer program for beam described in the title of Figure 7(a)
at t = 1314 usec and 1556 usec, respectively.

TS ~am o
Ly




38

(b) Second mode. Specimen number 11 in Table 2 of
Reference [1] .

experimental results.

equation (72) with A= 45.99

equation (72) with ooreplaced by 0.6180o and

o, + numerical elastic-plastic predictions of

JET3C computer program for beam described in the title of

Figure 7(b) at t = 506 pusec and t = 587 usec, respectively.

(c) Third mode. Specimen number 23 in Table 3 of Reference [(1].

experimental results.

b ; equation (72) with A = 48.13
------------- equation (72) with o, replaced by 0.6180O

and )» = 48.13.
0, + numerical elastic-plastic predictions of JET
3C computer program for beam described in title of Figure 8
at t = 1077 uysec and t = 1382 usec, respectively.

Figure 10. Temporal variation of plastic work, elastic strain
energy (S.E.) and kinetic energy (K.E.) for (a) first mode,
(b) second mode and (c) third mode test specimens described
in the titles of Figures 7(a), 7(b) and 8, respectively.

s (R =1 is total initial kinetic energy).
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